Hot Spots and Mantle Plumes

نویسنده

  • Donald L. Turcotte
چکیده

Hot spots are anomalous areas of surface volcanism that cannot be directly associated with plate tectonic processes. The term hot spot is used rather loosely. It is often applied to any long-lived volcanic center that is not part of the global network of mid-ocean ridges and island arcs. The classic example is Hawaii. Anomalous regions of thick crust on ocean ridges are also considered to be hot spots. The prototype example is Iceland. There is little agreement on the total number of hot spots. Several hot spot lists have been published, and the number of volcanic centers included on these lists ranges from about 20 to more than 100. In one of his original papers associating hot spots with mantle plumes, Morgan (1972) listed 19 hot spots. Crough and Jurdy (1980) listed 42, Wilson (1973) listed 66, and Vogt (1981) listed 117. Table 11.1 gives the coordinates of 30 hot spots from the list of Crough and Jurdy (1980), and Figure 11.1 shows the locations of 20 prominent hot spots (see also Figure 2.23). In many cases hot spots have well-defined tracks associated with volcanic ridges or lines of volcanic edifices; these are also shown in Figure 11.1 and in Figure 2.23. A few hot spots and the tracks they have made appear on all lists, either because of high eruption rates in the recent past or because they have produced conspicuous traces. Among these are Hawaii, Iceland, Reunion, Cape Verde, and the Azores. Others, such as Bermuda, do not have an extensive volcanic history, but qualify as hot spots because they sit atop broad topographic rises or seafloor swells. Large continental volcanic centers, such as Yellowstone and some in East Africa, make most lists because of their similarity to oceanic hot spots. The concept of stationary heat sources in the mantle was introduced by Wilson (1963c) as an explanation for the Hawaiian chain. Morgan (1971, 1972) was the first to advocate a global array of deep mantle plumes for the origin of hot spots. Morgan envisioned mantle plumes to be vertical conduits in which hot mantle material rises buoyantly from the lower mantle to the lithosphere at velocities as large as 1myr−1. The plume concept has steadily gained acceptance in spite of the fact that the geological, geophysical, and geochemical evidence for plumes, while growing, is still largely indirect. There are also some critical observations that plume theory has never satisfactorily explained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mantle plumes: Dynamic models and seismic images

[1] Different theories on the origin of hot spots have been debated for a long time by many authors from different fields, and global-scale seismic tomography is probably the most effective tool at our disposal to substantiate, modify, or abandon the mantle-plume hypothesis. We attempt to identify coherent, approximately vertical slow/hot anomalies in recently published maps of P and S velocity...

متن کامل

Not so hot "hot spots" in the oceanic mantle.

Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle else...

متن کامل

What Can Seismology Say About Hot Spots?

Seismology offers the highest-resolution view of mantle structure. In the decades since Morgan [1971] first proposed deep-mantle plumes, seismologists have used increasingly sophisticated methods to look for evidence of such structures, but so far they have had little success. This abstract outlines the relevant seismological methods for non-specialists and summarizes the current state of knowl...

متن کامل

Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients

Hot spot volcanism may originate from the deep mantle in regions exhibiting the Earth’s most pronounced lateral S-wave velocity gradients. These strong gradient regions display an improved geographic correlation over S-wave velocities to surface hot spot locations. For the lowest velocities or strongest gradients occupying 10% of the surface area of the core–mantle boundary (CMB), hot spots are...

متن کامل

Mantle Convection at Earth-like Vigor: Thermal Plumes Reconcile Hot–spot Observations

Hot–spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes. They are widely regarded as the surface expression of hot, columnar plumes, upwelling from deep within Earth’s 2900–km thick mantle. Hot–spots have variable life–spans, magmatic productivity and fixity. This suggests that a wide– range of upwelling structures co–exist within Earth’s ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006